*

X

Científicamente, este es tu mejor perfil para un retrato, selfie o cualquier otra fotografía

Ciencia

Por: pijamasurf - 11/25/2017

Si te preguntas cuál es tu mejor perfil para las fotografías, la ciencia tiene una respuesta

En la era de la selfie, quizá más de una persona se pregunte cuál es el mejor perfil para autorretratarse, cuestión que la mayoría de las ocasiones se responde por medio de la experimentación, es decir, el ensayo y el error, pero que también tiene una inesperada explicación científica.

De acuerdo con Simone Schnall, especialista en psicología social y experimental por la Universidad de Cambridge, mostrarnos en retratos y otras fotografías afines con nuestro perfil derecho puede ser la mejor opción a elegir.

Según sus observaciones, existe una tendencia de interpretación del espacio y de una imagen, simultáneamente psicológica y cultural, que nos lleva a atribuir ciertas cualidades específicas a las personas cuyo retrato muestra su perfil derecho, en especial, dinamismo y apertura de mente y espíritu.

Vincent van Gogh, Autorretrato con oreja vendada (1889)

En el caso opuesto, las personas que se muestran desde su lado izquierdo suelen ser “leídas” como más cerradas o conservadoras, como en esta pintura de Pablo Picasso (Femme aux bras croisés, 1902):

Sea como fuere, quizá sea una hipótesis que puedes poner a prueba, ¿no crees?

 

También en Pijama Surf: 20 técnicas de composición que mejorarán sustancialmente todas tus fotografías

Alquimia cósmica: colisión de estrellas de neutrones nos enseñó cómo se crea el oro en el universo

Ciencia

Por: pijamasurf - 11/25/2017

Las estrellas son, por supuesto, las primeras alquimistas; así se crea el oro a partir de la colisión de dos estrella de neutrones

Una reciente colisión de estrellas de neutrones arrojó luz, literalmente, a la creación de oro y otros metales raros en el universo, mostrando por primera vez la alquimia cósmica que genera estos elementos. 

Los científicos saben que en el origen del universo se creó hidrógeno y cuando las estrellas se forman, fusionan hidrógeno con elementos más pesados como el carbón y el hidrógeno. Cuando las estrellas mueren se crean elementos más pesados, metales comunes como el hierro y el aluminio, los cuales son diseminados en explosiones de supernovas. Hasta hace poco se creía que estas explosiones estelares debían de producir metales más raros como el oro. Sin embargo, ignoraban un paso más. La muerte de una estrella masiva deja una estrella de neutrones. Estas estrellas son de menor tamaño, con un diámetro que suele oscilar entre los 20km. En parte, sus dimensiones se deben a que las estrellas de neutrones son el núcleo colapsado de una estrella mayor, lo cual a su vez, aunque pequeñas, las hace también las más densas de entre las conocidas, con una masa que puede llegar a ser el doble de la de nuestro sol. Por otro lado, se les llama "de neutrones" porque esa es casi la única partícula subatómica que las compone, luego del efecto combinado de la explosión de supernova de una estrella masiva que les da origen y el colapso gravitatorio sobre su núcleo.

Recientemente científicos del Observatorio de Interferometría Láser de Ondas Gravitatorias observaron por primera vez a detalle una colisión de dos estrellas de neutrones, uno de los fenómenos más violentos que pueden ocurrir en el universo y que, por la energía implicada en el choque, culmina con el colapso de ambas estrellas en un agujero negro. Las dos estrellas que chocaron estaban localizadas a 130 millones de años luz de la Tierra, con una masa ligeramente superior a la del Sol y, al momento en que inició la observación, con poco más de 300km de distancia entre sí. Los astrónomos recibieron la alerta sobre el suceso porque ambas estrellas empezaron a girar a tal velocidad que el espacio-tiempo comenzó a alterarse. Al principio, los astros giraban 20 veces por segundo alrededor uno del otro; 100 segundos después, los giros eran de 2 mil veces por segundo, acercándose cada vez más, en una especie de danza fatal e inesperadamente hermosa en su destrucción inminente. Un par de segundos después, el telescopio espacial Fermi de la NASA registró una ráfaga intensa de rayos gamma y restos de materia cósmica. 

En la luz mortecina de la colisión los científicos pudieron resolver el enigma de cómo se forma el oro. En el espectro luminoso yacen las huellas de los elementos -cada elemento tiene una particular huella de líneas dentro del espectro, que refleja una diferente estructura atómica. El espectro de la explosión, lo que se llama una kilonova, contiene huellas de los elementos más pesados del universo; la luz marca la firma del material estelar en decadencia convirtiéndose en platino, oro y otros elementos. Estos elementos necesitan de una enorme cantidad de energía para añadir neutrones a un núcleo atómico, y la explosión observada creó oro igual a unas diez Tierras en cantidad. De esta misma forma fue creado el oro o el platino que puedes estar usando en estos momentos, en el fuego atómico de la colisión de una estrella de neutrones en nuestra galaxia hace miles de millones de años.

El oro de la explosión observada el 17 de agosto tendrá probablemente un destino similar. Se mezclará con polvo y gas en su galaxia natal y posiblemente algún día formará parte de un nuevo planeta donde quizás evolucione la vida.